# **Association Between Fluid Balance and Outcomes in Critically III Children** A Systematic Review and **Meta-analysis**

Dr Nguyen Hoang Phuong Anh

## Introduction

- Fluid therapy: cornerstone of resuscitation in Critically ill children
- Adequate volume using early aggresive fluid administration can be lifesaving.
- Critically ill children often receive "obligatory" fluid intake (nutrition, medication, and mainstenance fluid)
- $\rightarrow$  positive fluid balance.

- Many evidence suggests that fluid accumulation after initial resucitation may exert hazard for major morbidity and mortality.
- Defined as a fluid accumulation > 10% of baseline weight.
- It is an independent factor of worse outcome in ICU patients
- $\rightarrow$  importance of monitoring fluid status daily for avoidable fluid accumalation.

## Association Between Fluid Balance and Outcomes in Critically III Children

#### A Systematic Review and Meta-analysis

Rashid Alobaidi, MD<sup>1</sup>; Catherine Morgan, MD, MSc<sup>2</sup>; Rajit K. Basu, MD<sup>3</sup>; Erin Stenson, MD<sup>4</sup>; Robin Featherstone, MLIS<sup>5</sup>; Sumit R. Majumdar, MD, MPH<sup>6</sup>; Sean M. Bagshaw, MD, MSc<sup>7</sup>

JAMA Pediatr. Published online January 22, 2018. doi:10.1001/jamapediatrics.2017.4540.

[+]Author Affiliations

#### ABSTRACT

#### Importance

After initial resuscitation, critically ill children may accumulate fluid and develop fluid overload. Accruing evidence suggests that fluid overload contributes to greater complexity of care and worse outcomes.

#### **Objective**

# Question

• Is there an association between fluid balance and outcomes in critically ill children admitted to pediatric intensive care?

# **Main Outcomes and Measures**

- Primary outcome: Mortality
- Secondary outcomes included treatment intensity, organ failure, and resource use.

# • This systematic review and meta-analysis of 44 studies including 7507 children

- showed strong and consistent evidence of an association between fluid overload and poor outcomes in critically ill children.
- Including

worsening respiratory function
development of acute kidney injury,
longer pediatric intensive care stay
death.

#### Fluid Balance Assessment

- Peak percentage fluid overload (37)
- Peak percentage weight change (4)
- Net fluid balance in relation to weight (5)
- Net fluid balance in relation to body surface area (1)

#### Despite many studies show the harmful effect of fluid overload on outcomes

- No consensus on how best to define it.
- Definition of fluid over load include 3 components
  - Methods of fluid balance assessment
  - Methods used to quantify fluid overload
  - Fluid Overload Definitions

## Methods of fluid balance assessment

- Recorded daily intake-output
- Serial weight mesuarements

## Methods used to quantify fluid overload

- Method: proposed by Goldstein and colleages most frequencently used.
- Method: % WEIGHT CHANGE
- $\rightarrow$ Both methods clinically usefull.

% fluid overload= [( total fluid intake in Liters – total fluid Output in Liters)]/Admission Weight In Kilogram] x 100%

% weight change= [(current weight – admission Weight)/ admission Weight] X 100

## Fluid Overload Definitions

 # threshold of 10% that used in studies and show association with worse outcomes.

#### Table 2. Fluid Overload Definitions

|            | Weight Used                                                    | Assessment Period  |                         |                                                                                                                                                                                                                                     |  |
|------------|----------------------------------------------------------------|--------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| %FO Cutoff |                                                                | Start End          |                         | Source                                                                                                                                                                                                                              |  |
| %F0>5%     | Not specified                                                  | PICU admission     | POD 1                   | Hassinger et al, <sup>34</sup> 2014                                                                                                                                                                                                 |  |
|            | PICU admission weight                                          | PICU admission     | 24 h After<br>admission | Chen et al, <sup>24</sup> 2016                                                                                                                                                                                                      |  |
|            | PICU admission weight                                          | PICU admission     | 24 h After<br>admission | Li et al, <sup>6</sup> 2016                                                                                                                                                                                                         |  |
|            | Hospital admission<br>weight or the most<br>recent PICU weight | Intraoperative     | POD 2                   | Lex et al, <sup>41</sup> 2016                                                                                                                                                                                                       |  |
| %F0>7%     | Not specified                                                  | Intraoperative     | POD 3                   | Park et al, <sup>45</sup> 2016                                                                                                                                                                                                      |  |
| %F0>10%    | PICU admission weight                                          | PICU admission     | CRRT<br>initiation      | Askenazi et al, <sup>21</sup> 2013; Boschee et al, <sup>23</sup><br>2014; de Galasso et al, <sup>27</sup> 2016; Gillespie<br>et al, <sup>31</sup> 2004; Selewski et al, <sup>49</sup> 2012;<br>Sutherland et al, <sup>51</sup> 2010 |  |
|            | PICU admission weight                                          | Not specified      | CRRT<br>initiation      | Modem et al, <sup>43</sup> 2014                                                                                                                                                                                                     |  |
|            | Not specified                                                  | 24 h Before CRRT   | CRRT<br>initiation      | Elbahlawan et al, <sup>28</sup> 2010                                                                                                                                                                                                |  |
|            | Hospital admission weight                                      | Hospital admission | Not specified           | Michael et al, <sup>42</sup> 2004                                                                                                                                                                                                   |  |
|            | Hospital admission weight                                      | PICU admission     | PICU day 2              | Sinitsky et al, <sup>50</sup> 2015                                                                                                                                                                                                  |  |
|            | PICU admission weight                                          | PICU admission     | PICU day 3              | Bhaskar et al, <sup>5</sup> 2015                                                                                                                                                                                                    |  |
|            | PICU admission weight                                          | Not specified      | Not specified           | Sutawan et al, <sup>52</sup> 2016                                                                                                                                                                                                   |  |
|            | Preoperative weight                                            | PICU admission     | PICU day 7              | Hazle et al, <sup>10</sup> 2013                                                                                                                                                                                                     |  |
|            | PICU admission weight                                          | PICU admission     | PICU<br>discharge       | Ketharanathan et al, <sup>40</sup> 2014                                                                                                                                                                                             |  |
|            | Not specified                                                  | PICU admission     | PICU<br>discharge       | Naveda et al, <sup>44</sup> 2016                                                                                                                                                                                                    |  |
| %FO>13%    | Not specified                                                  | PICU admission     | PICU day 2              | Vidal et al, <sup>54</sup> 2016                                                                                                                                                                                                     |  |
| %FO>15%    | PICU admission weight                                          | PICU admission     | 14d                     | Arikan et al, <sup>20</sup> 2012                                                                                                                                                                                                    |  |
| %F0>20%    | PICU admission weight                                          | PICU admission     | PICU<br>discharge       | Diaz et al, <sup>26</sup> 2017                                                                                                                                                                                                      |  |
|            | PICU admission weight                                          | PICU admission     | CRRT<br>initiation      | Askenazi et al, <sup>21</sup> 2013; Goldstein et al,<br>2005; Jhang et al, <sup>38</sup> 2014; Selewski et<br>al, <sup>49</sup> 2012; Sutherland et al, <sup>51</sup> 2010                                                          |  |
|            | PICU admission weight                                          | Not specified      | CRRT<br>initiation      | Modem et al, <sup>43</sup> 2014                                                                                                                                                                                                     |  |
|            | Hospital admission weight                                      | PICU admission     | CRRT<br>initiation      | Hayes et al, <sup>35</sup> 2009                                                                                                                                                                                                     |  |
|            | Hospital admission weight                                      | PICU admission     | PICU day 2              | Sinitsky et al, <sup>50</sup> 2015                                                                                                                                                                                                  |  |
|            | Preoperative weight                                            | PICU admission     | PICU day 7              | Hazle et al, <sup>10</sup> 2013                                                                                                                                                                                                     |  |

## Result

- The proportion of children with fluid overload varied by case mix and fluid overload definition (median, 33%; range, 10%-83%).
- Maximum percentage fluid overload was achieved on day 5.7 (±4.2) after PICU admission in cohort pts mechanical ventilation.
- In pts with cardiac surgery, percentage fluid overload within the first 24-48h after surgery.

# Mortality

- Fluid overload associated with increased in-hospital mortality (17 studies [n = 2853]; odds ratio [OR], 4.34 [95% CI, 3.01-6.26]; l<sup>2</sup> = 61%).
- Survivors had lower percentage fluid overload than nonsurvivors (22 studies [n = 2848]; mean difference, -5.62 [95% CI, -7.28 to -3.97]; *I*<sup>2</sup> = 76%).
- After adjustment for illness severity, every 1% increase in percentage fluid overload → 6% increase mortality (11 studies [n = 3200]; adjusted OR, 1.06 [95% CI, 1.03-1.10]; l<sup>2</sup> = 66%).

**eFigure 2.** Association Between FO (Categorical Exposure) and Mortality in Studies Adjusting for Severity of Illness



**eFigure 3.** Association Between Fluid Overload (Categorical Exposure) and Mortality Omitting Studies of Children Receiving CRRT

|                                                                                                            |                 |           |        | Odds Ratio           | Odds Ratio         |  |  |  |
|------------------------------------------------------------------------------------------------------------|-----------------|-----------|--------|----------------------|--------------------|--|--|--|
| Study or Subgroup                                                                                          | log[Odds Ratio] | SE        | Weight | IV, Random, 95% CI   | IV, Random, 95% CI |  |  |  |
| 1.2.1 CRRT                                                                                                 |                 |           |        |                      |                    |  |  |  |
| de Galasso 2016                                                                                            | 1.0963          | 0.3765    | 0.0%   | 2.99 [1.43, 6.26]    |                    |  |  |  |
| Elbahlawan 2010                                                                                            | -0.2719         | 1.244     | 0.0%   | 0.76 [0.07, 8.73]    |                    |  |  |  |
| Gillespie 2004                                                                                             | 1.1053          | 0.357     | 0.0%   | 3.02 [1.50, 6.08]    |                    |  |  |  |
| Hayes, 2009                                                                                                | 1.8036          | 0.5252    | 0.0%   | 6.07 [2.17, 17.00]   |                    |  |  |  |
| Jhang, 2014                                                                                                | 1.4956          | 0.6452    | 0.0%   | 4.46 [1.26, 15.80]   |                    |  |  |  |
| Michael 2004                                                                                               | 1.9459          | 0.8997    | 0.0%   | 7.00 [1.20, 40.82]   |                    |  |  |  |
| Modem 2014                                                                                                 | 0.9442          | 0.3021    | 0.0%   | 2.57 [1.42, 4.65]    |                    |  |  |  |
| Selewski 2012                                                                                              | 1.0922          | 0.7478    | 0.0%   | 2.98 [0.69, 12.91]   |                    |  |  |  |
| Sutherland 2010                                                                                            | 1.3604          | 0.2643    | 0.0%   | 3.90 [2.32, 6.54]    |                    |  |  |  |
| Subtotal (95% CI)                                                                                          |                 |           |        | Not estimable        |                    |  |  |  |
| Heterogeneity. Not applicable                                                                              |                 |           |        |                      |                    |  |  |  |
| Test for overall effect: Not applicable                                                                    |                 |           |        |                      |                    |  |  |  |
| 122 Canala (Shaak                                                                                          |                 |           |        |                      |                    |  |  |  |
| 1.2.2 Sepsis/Snock                                                                                         |                 |           |        |                      |                    |  |  |  |
| Bhaskar, 2015                                                                                              | 1.7971          | 0.6228    | 11.8%  | 6.03 [1.78, 20.45]   |                    |  |  |  |
| Chen 2016                                                                                                  | 2.4368          | 0.4052    | 14.3%  | 11.44 [5.17, 25.30]  |                    |  |  |  |
| Naveda 2016                                                                                                | 2.8856          | 0.5574    | 12.5%  | 17.91 [6.01, 53.41]  |                    |  |  |  |
| Subtotal (95% CI)                                                                                          | 0.00. Chi? 1.70 | -16 - 7 / | 30.0%  | 11.24 [0.57, 19.05]  | -                  |  |  |  |
| Heterogeneity: Tau <sup>4</sup> = 0.00; Chi <sup>4</sup> = 1.70, df = 2 (P = 0.43); l <sup>4</sup> = 0%    |                 |           |        |                      |                    |  |  |  |
| lest for overall effect: $2 = 8.34 (P < 0.00001)$                                                          |                 |           |        |                      |                    |  |  |  |
| 1.2.4 General                                                                                              |                 |           |        |                      |                    |  |  |  |
| Diaz 2017                                                                                                  | 0.6799          | 0.3777    | 14.6%  | 1.97 [0.94, 4.14]    |                    |  |  |  |
| Ketharanathan 2014                                                                                         | 3.1023          | 1.2792    | 6.0%   | 22.25 [1.81, 273.00] |                    |  |  |  |
| Li 2016                                                                                                    | 1.9313          | 0.4969    | 13.2%  | 6.90 [2.60, 18.27]   |                    |  |  |  |
| Sinitsky 2015                                                                                              | 0.4152          | 0.2926    | 15.4%  | 1.51 [0.85, 2.69]    |                    |  |  |  |
| Sutawan 2016                                                                                               | 2.4384          | 0.579     | 12.3%  | 11.45 [3.68, 35.63]  |                    |  |  |  |
| Subtotal (95% CI)                                                                                          |                 |           | 61.4%  | 4.22 [1.73, 10.30]   | •                  |  |  |  |
| Heterogeneity: Tau <sup>2</sup> = 0.72; Chi <sup>2</sup> = 17.10, df = 4 (P = 0.002); I <sup>2</sup> = 77% |                 |           |        |                      |                    |  |  |  |
| Test for overall effect: Z = 3.17 (P = 0.002)                                                              |                 |           |        |                      |                    |  |  |  |
| Total (95% CI)                                                                                             |                 |           | 100.0% | 6.20 [2.89, 13.28]   | •                  |  |  |  |
| Heterogeneity: Tau <sup>2</sup> = 0.90; Chi <sup>2</sup> = 35.06, df = 7 (P < 0.0001); $l^2$ = 80%         |                 |           |        |                      |                    |  |  |  |
| Text for everyll effect: 7 4 50 /0 + 0.00001) 0.01 0.1 1 10 100                                            |                 |           |        |                      |                    |  |  |  |

Favors fluid overload Favors no fluid overload

Heterogeneity. Tau<sup>2</sup> = 0.90; Chi<sup>2</sup> = 35.06, df = 7 (P < 0.0001); l<sup>2</sup> = 80% Test for overall effect: Z = 4.69 (P < 0.00001) Test for subgroup differences: Chi<sup>2</sup> = 3.29, df = 1 (P = 0.07), l<sup>2</sup> = 69.6%

## Prolonged mechanical ventilation

eFigure 8. Random-Effects Meta-analysis of FO and Prolonged Mechanical Ventilation



Fluid overload was associated with increased risk for prolonged mechanical ventilation (>48 hours) (3 studies [n = 631]; OR, 2.14 [95% CI, 1.25-3.66];  $l^2 = 0\%$ )

# Acute kidney injury

Acute kidney injury (7 studies [n = 1833]; OR, 2.36 [95% CI, 1.27-4.38]; *I*<sup>2</sup> = 78%).

eFigure 9. Random-Effects Meta-analysis of FO and Acute Kidney Injury



## PICU Lenght of Stay

#### eFigure 10. Random-Effects Meta-analysis of FO and PICU Length of Stay



# **Conclusions and Relevance**

- Fluid overload is common and is associated with substantial morbidity and mortality in critically ill children.
- A threshhold may exist beyond which fluid accumulation becomes unhelpful or frankly harmful.
- Clinicians should monitor fluid balance and consider the hazard associated with avoidable fluid acucumulation and overload.